When to use LinkedList over ArrayList in Java
In this tutorial we are going to learn about LinkedList over ArrayList in detail.
LinkedList
ArrayList
So depending on the operations you intend to do, you should choose the implementations accordingly. Iterating over either kind of List is practically equally cheap. (Iterating over an ArrayList is technically faster, but unless you’re doing something really performance-sensitive, you shouldn’t worry about this — they’re both constants.)
The main benefits of using a LinkedList arise when you re-use existing iterators to insert and remove elements. These operations can then be done in O(1) by changing the list locally only. In an array list, the remainder of the array needs to be moved (i.e. copied). On the other side, seeking in a LinkedList means following the links in O(n) (n/2 steps) for worst case, whereas in an ArrayList the desired position can be computed mathematically and accessed in O(1).
Another benefit of using a LinkedList arise when you add or remove from the head of the list, since those operations are O(1), while they are O(n) for ArrayList. Note that ArrayDeque may be a good alternative to LinkedList for adding and removing from the head, but it is not a List.
Also, if you have large lists, keep in mind that memory usage is also different. Each element of a LinkedList has more overhead since pointers to the next and previous elements are also stored. ArrayLists don’t have this overhead. However, ArrayLists take up as much memory as is allocated for the capacity, regardless of whether elements have actually been added.
The default initial capacity of an ArrayList is pretty small (10 from Java 1.4 - 1.8). But since the underlying implementation is an array, the array must be resized if you add a lot of elements. To avoid the high cost of resizing when you know you’re going to add a lot of elements, construct the ArrayList with a higher initial capacity.